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The efficacy of Facebook’s vaccine misinformation
policies and architecture during the COVID-19
pandemic
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Online misinformation promotes distrust in science, undermines public health, and may drive civil unrest.
During the coronavirus disease 2019 pandemic, Facebook—the world’s largest social media company—

began to remove vaccine misinformation as a matter of policy. We evaluated the e&cacy of these policies
using a comparative interrupted time-series design. We found that Facebook removed some antivaccine
content, but we did not observe decreases in overall engagement with antivaccine content. Provaccine
content was also removed, and antivaccine content became more misinformative, more politically polarized,
and more likely to be seen in users’ newsfeeds. We explain these *ndings as a consequence of Facebook’s
system architecture, which provides substantial ,exibility to motivated users who wish to disseminate misinfor-
mation through multiple channels. Facebook’s architecture may therefore a-ord antivaccine content producers
several means to circumvent the intent of misinformation removal policies.
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INTRODUCTION

Online misinformation undermines trust in scientific evidence (1)
and medical recommendations (2). It has been linked to harmful
offline behaviors including stalled public health efforts (3), civil
unrest (4), and mass violence (5). The coronavirus disease 2019
(COVID-19) pandemic has spurred widespread concern that mis-
information spread on social media may have lowered vaccine
uptake rates (6, 7). Therefore, policymakers and public officials
have put substantial pressure on social media platforms to curtail
misinformation spread (8, 9).
Years of “soft” remedies—such as warning labels by Twitter (10),

YouTube (11), and Facebook (12) and attempts by these platforms
to downrank objectionable content in search—have demonstrated
some success (13); however, misinformation continues to spread
widely online, leading many to question the efficacy of these inter-
ventions (14). Some have suggested that combining these soft rem-
edies with “hard” remedies (15)—removing content and
objectionable accounts (16–18)—could largely curtail misinforma-
tion spread (19). However, evidence for the short-term efficacy of
hard remedies is mixed (20–24), and the long-term efficacy of
these strategies has not been systematically examined. Hard reme-
dies have also spurred accusations of censorship and threats of legal
action (25, 26). There is therefore a critical need to understand
whether this combination of remedies is effective—i.e., whether it
reduces users’ exposure to misinformation—and if not, why not.
Any evaluation of the efficacy of these remedies must be ground-

ed in a scientific understanding of why misinformation spreads
online. Prior work indicates that misinformation may spread

widely on social media if it is framed in a manner that is more com-
pelling than true information (27, 28). Users appear to prefer
sharing true information when cued to think about accuracy (13);
however, the social media environment may interfere with peoples’
ability to distinguish truth from falsehood (29, 30). Other studies
have suggested that social media platforms’ algorithms facilitate
the creation of “echo chambers” (31, 32), which increase exposure
to content from like-minded individuals. Accordingly, prior inter-
ventions have focused on altering the social media environment to
either reduce users’ exposure to misinformation or inform them
when content is false. However, recent evidence suggests that
people use online algorithms to actively seek out and engage with
misinformation (33). Therefore, on the basis of prior theory (34,
35), we examine how a social media platform’s “system architec-
ture”—its designed structure that shapes how information flows
through the platform (34)—enables antivaccine content producers
and users to flexibly (36) establish new paths to interdicted content,
facilitating resistance to content removal efforts.
We analyzed Facebook because it is the world’s largest social

media platform. In December 2020, when COVID-19 vaccines
first became available, Facebook had 2.80 billion monthly active
users (37). As of April 2023, this number had grown to 2.99
billion monthly active users (25). We therefore conducted an eval-
uation of Facebook’s attempts to remove antivaccine misinforma-
tion from its public content throughout the COVID-19 pandemic.
Of primary interest were the following three research questions:

(i) Were Facebook’s policies associated with a substantial decrease
in public antivaccine content and engagement with remaining anti-
vaccine content? (ii) Did misinformation decrease when these pol-
icies were implemented? (iii) How might Facebook’s system
architecture have enabled or undermined these policies?

Data and de,nitions
We downloaded public data from Facebook pages and groups using
CrowdTangle (38), which has been called “the most effective trans-
parency tool in the history of social media” (39). To obtain these
data, we searched CrowdTangle on 15 November 2020, immediately
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before Facebook’s 18 November 2020 removal of “Stop Mandatory
Vaccination”—one of the platform’s largest antivaccine fan pages
(40). We chose this event because it immediately preceded Face-
book’s 3 December 2020 announcement that false claims about
COVID-19 vaccines and accounts that repeatedly posted these
claims would be removed (41). Furthermore, on 8 February 2021,
Facebook extended this policy to vaccine misinformation in
general (42). Thus, our reference date marks the first of a series of
hard content remedies specifically targeting vaccine
misinformation.
Our search yielded a set of 216 (114 antivaccine and 102 provac-

cine) English-language pages and 100 (92 antivaccine and 8 provac-
cine) English-language groups that primarily discussed vaccines.
Our dataset consisted of 119,091 (86,893 antivaccine, 73%) posts
to pages and 168,419 (163,095 antivaccine, 97%) posts to groups
that were created between 15 November 2019 and 15 November
2020 and 177,615 (110,093 antivaccine, 62%) and 244,981
(231,788 antivaccine, 95%) posts that were created between 16 No-
vember 2020 and 28 February 2022 to the same pages and groups,
respectively.
We examined pages and groups separately because they serve

different functions in Facebook’s system architecture: Only page ad-
ministrators may post in pages, which are designed for marketing
and brand promotion. In contrast, any member may post in
groups, which serve as a forum for members to build community
and discuss shared interests. Furthermore, pages may serve as
group administrators (43), establishing an architecturally meaning-
ful hierarchical relationship between these two types of venues.
We used a comparative interrupted time-series (CITS) design to

compare theweekly number of Facebook posts in public antivaccine
and provaccine Facebook pages and groups to prepolicy trends and
to compare these trends to one another. Beyond raw post volumes,
we measured the total number of engagements—defined as sum of
all interactions (shares, comments, likes, and emotional reactions,
such as sad, love, angry, etc.)—with each post. Facebook uses
these engagements when prioritizing content in users’ newsfeeds
(44, 45), meaning that content with many engagements is more
likely to be seen and, consequently, shared. We therefore consider
Facebook’s policies to be efficacious if they reduced engagement
with antivaccine content compared to prepolicy trends.

RESULTS

Forty-nine (37, 76% antivaccine) pages and 31 (28, 90% antivac-
cine) groups in our sample were removed by 28 February 2022.
Antivaccine pages and groups were 2.13 [95% confidence interval
(CI), 1.70 to 2.66] times more likely to have been removed than
their provaccine counterparts. In addition, 5 (5%) antivaccine
groups changed their settings from public to private.

Antivaccine and provaccine content volumes decreased
Posts in both antivaccine and provaccine pages decreased relative to
prepolicy trends (Fig. 1A). However, antivaccine page post volumes
decreased more than provaccine page post volumes: Antivaccine
post volumes decreased 1.47 [relative risk (RR) = 0.68; 95% CI,
0.61 to 0.76; Table 1] times more than provaccine post volumes.
Posts to antivaccine groups also decreased relative to prepolicy
trends (Fig. 1B), and antivaccine group post volumes decreased

3.57 (RR = 0.28; 95% CI, 0.21 to 0.37; Table 1) times more than pro-
vaccine group post volumes.

Engagement with antivaccine content matched or
exceeded prepolicy expectations
We did not observe significant changes in engagement with content
in antivaccine pages (RR = 0.73; 95% CI, 0.28 to 1.90; Fig. 1E). In
groups, antivaccine engagement counts were, on average, 33%
higher than what would be expected on the basis of prepolicy
trends (RR = 1.33; 95% CI, 1.05 to 1.69; Fig. 1F), although this in-
crease was not significant when compared to provaccine group
trends (RR = 1.22; 95% CI, 0.94 to 1.56; Table 1). In addition,
while performing a robustness check on a second sample of antivac-
cine groups that were identified on 28 July 2021, we found that en-
gagement counts were comparable to prepolicy levels (fig. S10),
raising the possibly that Facebook’s policies may have shifted,
rather than decreased, engagement.

Misinformative topics increased in antivaccine pages
We next examined whether remaining content became less misin-
formative following Facebook’s policies. We observed increases in
the proportions of several topics appearing to violate Facebook’s
community standards in Facebook pages (Fig. 2; topics are shown
in table S1, and examples posts are shown in table S2). The largest
increase occurred in a topic alleging severe COVID-19 vaccine
adverse reactions [odds ratio (OR) = 1.41; 95% CI, 1.05 to 1.90;
table S3]. Similarly, reports of hospitalization and death (OR =
1.23; 95% CI, 1.80 to 1.38) and promotion of alternative medicine
(OR = 1.32; 95%CI, 1.28 to 1.35) increased. Topics alleging negative
effects of vaccines on immunity, either due to toxic ingredients (OR
= 1.24; 95% CI, 1.13 to 1.37) or focused on children (OR = 1.34; 95%
CI, 1.02 to 1.77), also increased.We also observed increases in topics
discussing school (OR = 2.02; 95% CI, 1.65 to 2.46) and other
vaccine mandates (OR = 1.21; 95% CI, 1.16 to 1.27), legislation op-
posing vaccination (OR = 1.06; 95% CI, 1.02 to 1.13), and antivac-
cine medical advice (OR = 1.14; 95% CI, 1.09 to 1.18).
Discussion of several misinformative topics also increased in

antivaccine groups, compared to prepolicy trends; especially those
pertaining to aspects of vaccine safety and efficacy, as well as man-
dates (table S3). These increases were significantly smaller in mag-
nitude than increases in provaccine groups, suggesting that they
were not attributable to Facebook’s policies.
Links to misinformative and polarized sources increased in
antivaccine groups
We next examined whether the proportion of links to low credibility
(46, 47) external sources changed. Beyond spreading potential mis-
information, these links have architectural importance because they
enable users to easily access content off the platform that is not
under the control of Facebook’s content moderators. In pages, we
observed an increase in low-credibility links between February and
mid-September 2021; however, the proportion of these links subse-
quently decreased, leading to an overall null effect (OR = 1.00; 95%
CI, 0.96 to 1.04; Fig. 3A and Table 1). A whistleblower at Facebook
released several internal documents to the Securities and Exchange
Commission and the Wall Street Journal (48) in mid-September
2021, garnering substantial media attention. This media attention
may have led Facebook to target these links for removal; however,
this is a post hoc speculation. Despite this decrease, the odds that a
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Fig. 1. Comparison of empirical post and engagement counts to prepolicy trends. Projections based on autoregressive integrated moving average (ARIMA) models

are projected forward from the end of the prepolicy period (15 November 2020; dotted line). Analyses were conducted after applying a logarithmic transform to the data;

therefore, all data are displayed on a logarithmic scale. Gray indicates 95% CIs. Antivaccine content and engagements are shown in red, and provaccine content and

engagements are shown in blue. (A) Posts in antivaccine pages were significantly below prepolicy trends. (B) Posts in antivaccine groups were significantly below pre-

policy trends. (C) Posts in provaccine groups were significantly below prepolicy trends. (D) Posts in provaccine groups were consistent with prepolicy trends. (E) Engage-

ments with posts in antivaccine pages were consistent with prepolicy trends. (F) Engagements with posts in antivaccine groups significantly exceeded prepolicy trends.

(G) Engagements with posts in provaccine pages were consistent with prepolicy trends. (H) Engagements with posts in provaccine groups were consistent with pre-

policy trends.
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Table 1. Results of CITS analyses. OR, odds ratio; N/A, not applicable (e.g., because misinformative or polarized links were rare in provaccine pages and groups).

Venue

type

Count type Stance Data compared to prepolicy trend

RR (95% CI)

P Change in antivaccine compared to change in

provaccine RR (95% CI)

P

Counts

Pages Posts Anti 0.49 (0.45–0.53) <0.001 0.68 (0.61–0.76) <0.001

Pro 0.72 (0.67–0.76) <0.001

Engagements Anti 0.73 (0.28–1.90) 0.52 0.94 (0.36–2.45) 0.89

Pro 0.78 (0.69–0.88) <0.001

Groups Posts Anti 0.32 (0.27–0.38) <0.001 0.28 (0.21–0.37) <0.001

Pro 1.15 (0.92–1.45) 0.21

Engagements Anti 1.33 (1.05–1.69) 0.02 1.22 (0.94–1.56) 0.14

Pro 1.09 (0.97–1.23) 0.13

Data compared to prepolicy trend
OR (95% CI)

P Change in antivaccine compared to change in
provaccine OR (95% CI)

P

Iffy URLs

Pages Posts Anti 1.00 (0.96–1.04) 0.97 N/A N/A

Engagements Anti 2.69 (2.22–3.27) <0.001 N/A N/A

Groups Posts Anti 1.21 (1.02–1.42) 0.03 N/A N/A

Engagements Anti 1.07 (0.49–2.31) 0.87 N/A N/A

Polarized URLs

Pages Posts Anti 1.35 (1.24–1.48) <0.001 1.30 (1.09–1.54) 0.003

Pro 1.04 (0.90–1.21) 0.57

Engagements Anti 2.37 (1.03–5.45) 0.04 N/A N/A

Groups Posts Anti 1.51 (1.38–1.66) <0.001 N/A N/A

Engagements Anti 0.92 (0.85–1.00) 0.06 N/A N/A

Links to other Facebook pages

Pages Posts Anti 0.30 (0.25–0.36) <0.001 0.29 (0.03–3.62) 0.31

Pro 1.01 (0.10–10.47) 0.99

Engagements Anti 0.10 (0.08–0.14) <0.001 0.17 (0.11–0.26) <0.001

Pro 0.61 (0.46–0.81) <0.001

Coordinated pages and groups

Combined Posts Anti 0.41 (0.37–0.46) <0.001 N/A N/A

Reaction proportions

Pages Angry Anti 0.49 (0.47–0.52) <0.001 0.10 (0.02–0.64) 0.01

Pro 4.80 (0.77–29.90) 0.09

Other
reactions

Anti 1.43 (1.39–1.48) <0.001 2.71 (0.20–36.62) 0.44

Pro 0.53 (0.04–7.15) 0.63

Groups Angry Anti 0.54 (0.49–0.59) <0.001 0.30 (0.25–0.37) <0.001

Pro 1.77 (1.49–2.11) <0.001

Other
reactions

Anti 1.30 (1.24–1.37) <0.001 1.18 (1.12–1.24) <0.001

Pro 1.10 (1.08–1.12) <0.001

Absolute change from prepolicy
trend (95% CI)

P Relative change in antivaccine compared to
provaccine (95% CI)

P

Partisan bias

Pages Posts Anti 0.28 (0.20–0.36) <0.001 0.37 (0.26–0.47) <0.001

Pro −0.09 (−0.16 - −0.02) 0.02

Engagements Anti 0.01 (−0.02–0.03) 0.65 0.03 (−0.04–0.09) 0.47

continued on next page
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user engaged with posts containing these links was 2.69 (95% CI,
2.22 to 3.27) times higher than expectations based on prepolicy
trends (Fig. 3B). In groups, the odds that a post contained a link
to a low credibility source was 1.21 (95% CI, 1.02 to 1.42) times
higher than expectations based on prepolicy trends (Fig. 3C).
These linksmay have increasingly exposed antivaccine audiences

to politically polarized content. Relative to prepolicy trends, the
odds that a post contained a link to a politically polarized website
increased in pages (OR = 1.35; 95% CI, 1.24 to 1.48; Fig. 3E) and
groups (OR = 1.51; 95% CI, 1.38 to 1.66; Fig. 3G). Engagement
with these links increased in antivaccine pages (OR = 2.37; 95%
CI, 1.03 to 5.45; Fig. 3H).
On a nine-point scale, the average link posted in antivaccine

pages that was rated for political stance became 0.28 (95% CI,
0.20 to 0.36) points more polarized toward the right wing compared
to prepolicy trends. In contrast, politically rated links became 0.09
(95% CI, 0.02 to 0.16) points more polarized toward the left wing in
provaccine pages, leading to an overall widening of the partisan gap
by 0.37 (95% CI, 0.26 to 0.47) points (Fig. 3I). A trend toward rated
links in antivaccine groups displaying increasing right-wing parti-
san bias throughout the prepolicy period continued through Febru-
ary 2022 (Fig. 3K). Last, the average engagement with a rated link in
antivaccine and provaccine groups became 0.71 (95% CI, 0.24 to
1.18) and 0.19 (95% CI, 0.02 to 0.36) points more polarized to the
political right and left, respectively, leading to an overall widening of
the partisan gap by 0.90 (95% CI, 0.40 to 1.40) points (Fig. 3L).

Motivated users may still seek out misinformation
Facebook’s attempts to remove vaccine misinformation may have
faltered if the desire to engage with misinformation remained
high, despite Facebook’s attempts to remove content. Several con-
verging lines of evidence support this hypothesis. First, prior work
suggests that removal of antivaccine Facebook groups may have
been associated with increased activity on other platforms, such
as Twitter (49). Second, we observed an increase in links to “alter-
native” social media platforms—BitChute, Rumble, and Gab (50,
51)—as YouTube and Twitter began removing COVID-19 misin-
formation on 14 October 2020 and 1 March 2021, respectively.
Links to these alternative platforms were more prevalent in both
pages, RR = 2.88 (95% CI, 2.38 to 3.48), P < 0.001, and groups,
RR = 3.41 (95% CI, 3.19 to 3.64), P < 0.001, after the prepolicy
period. Furthermore, posts containing these links had a larger
share of engagements in both pages, RR = 1.60 (95% CI, 1.55 to
1.65), P < 0.001, and groups, RR = 7.19 (95% CI, 6.94 to 7.45), P
< 0.001. Third, a simulationmodel that we constructed and calibrat-
ed to prepolicy data (see the Supplementary Materials), best repro-
duced data from after the prepolicy period when we assumed that

removals shifted demand for antivaccine content to remaining
pages and groups, rather than reducing it. Together, these results
suggest that content and account removals may not have dissuaded
audiences from seeking out antivaccine misinformation.

Facebook’s architecture allows them to ,nd it
Even if demand for antivaccine content remains high, Facebook
users require the ability to find and access it, despite removals, for
this explanation to be plausible. Flexible systems enable users to
access interdicted content via several alternative paths, even if
some paths are removed (34–36). We observe that Facebook has
three key design features that, together, constitute a “layered hierar-
chy” (Fig. 4)—a structure that is theorized to promote flexibility in
the face of removals, while simultaneously allowing antivaccine
page administrators some degree of control over information flow
(34, 36). This combination of flexibility and control arises from the
ease with which page administrators and users may establish new
paths to interdicted content, while still respecting a hierarchical
structure in which pages can administer groups (43) and in which
content posted in both pages and groups is likely to be highly ranked
in users’ newsfeeds. Antivaccine page administrators can use this
structure to disseminate content to users in a manner that is medi-
ated by participatory (52) discussion groups that facilitate awareness
of and demand for antivaccine content. We therefore hypothesize
that each layer in this hierarchy facilitates flexibility by enabling
users to easily access antivaccine content despite removals: (i) as fol-
lowers of pages administered by antivaccine opinion leaders, (ii) as
members of discussion groups that may coordinate to post redun-
dant content, and (iii) by interacting with (e.g., liking, sharing, etc.)
posts to promote them in users’ newsfeeds.
Top layer: Pages are still reachable from one another
The top layer of Facebook’s hierarchy consists of pages that connect
to each other. Page administrators can collaborate to share followers
and content by linking to, or “liking,” (53) one another’s pages.
Users can then follow these links, finding new pages and content.
Thus, linked pages likely have overlapping sets of followers, creating
flexibility. Consistent with this explanation, antivaccine and provac-
cine pages frequently posted links to other aligned pages, forming
densely connected clusters (Fig. 4A) that predated Facebook’s pol-
icies and likely share audiences.
A system is flexible if it allows users to easily make changes to the

system without altering its overall architecture (34, 35). Here, flex-
ibility means that users have several means to easily access antivac-
cine content even if some ways of accessing that content was
removed (e.g., via post or account deletion). Because Facebook
uses a flexible layered hierarchy, removing some pages may not

Venue

type

Count type Stance Data compared to prepolicy trend

RR (95% CI)

P Change in antivaccine compared to change in

provaccine RR (95% CI)

P

Pro -0.02 (−0.08–0.04) 0.55

Groups Posts Anti 0.24 (−0.15–0.64) 0.24 −0.54(−2.79–1.70) 0.63

Pro 0.78 (−1.42–2.99) 0.48

Engagements Anti 0.71 (0.24–1.18) 0.003 0.90 (0.40–1.40) <0.001

Pro −0.19 (−0.36–0.02) 0.03
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Fig. 2. Changes in antivaccine topic proportions relative to prepolicy and provaccine trends. A dashed line indicates an OR of 1, meaning no change. Topics are

shown if at least one comparison was statistically significant. Ninety-five percent of CIs were calculated after applying the Benjamini-Hochberg procedure (77) to correct

for multiple comparisons, with a false discovery rate of α = 0.05. Markers are coded according to a validated typology of online vaccine content (64, 65). Solid markers

indicate that the topic is potentially prohibited under Facebook’s policies (76). Red (blue) markers indicate topics that increased (decreased) significantly relative to either
prepolicy or provaccine trends. (A) In pages, topics related to vaccine safety and efficacy increased in proportion relative to prepolicy trends, whereas those relative to

conspiracy theories decreased. (B) In pages, topics related to vaccine safety and efficacy increased relative to changes in provaccine topics. (C) In groups, topics related to

vaccine safety and efficacy increased in proportion relative to prepolicy trends, whereas those relative to politics decreased. (D) Several topics decreased in groups relative

to larger increases in provaccine groups. HPV, human papillomavirus.
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Fig. 3. Comparison of URL source credibility and partisanship ratings to prepolicy data. Dashed lines represent ARIMA model projections from the end of the

prepolicy period (15 November 2020, black dotted line). On 14 September 2021 (blue dotted line), a whistleblower at Facebook released internal documents to the

Wall Street Journal and Securities and Exchange Commission. The data in the top two rows are displayed on a logit scale due to logistic transformation during analysis.

Antivaccine and provaccine content and engagements are depicted in red and blue, respectively. Ninety-five percent of CIs are shown. (A) Proportions of Iffy URLs in

antivaccine pages exceeded prepolicy trends until 14 September 2021 and subsequently dropped below those trends. (B) The proportion of engagements with Iffy URLs

in antivaccine pages exceeded prepolicy trends. (C) Proportions of Iffy URLs in antivaccine groups exceeded prepolicy trends. (D) The proportion of engagements with Iffy

URLs in antivaccine groups remained consistent with prepolicy trends. (E) Proportions of polarized URLs in antivaccine pages exceeded prepolicy trends. (F) The pro-

portion of engagements with polarized URLs in antivaccine pages exceeded prepolicy trends. (G) Proportions of polarized URLs in antivaccine groups exceeded prepolicy

trends. (H) The proportion of engagements with polarized URLs in antivaccine groups remained consistent with prepolicy trends. (I) On average, URLs rated for political

stance in anti- and provaccine pages became more right- and left-leaning, respectively. (J) When weighted by engagement, the average ratings among URLs rated for

political stance in both antivaccine and provaccine pages remained consistent with prepolicy trends. (K) On average, URLs rated for political stance in both antivaccine

and provaccine groups remained consistent with prepolicy trends, indicating a sustained rightward shift in antivaccine groups. (L) When weighted by engagement

numbers, the average political stance rating became more right- and left-leaning in antivaccine and provaccine groups, respectively.
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Fig. 4. Pages, groups, and newsfeeds form a layered hierarchy that facilitates access to, and demand for, antivaccine content despite hard remedies. In the top

layer, page administrators link to one another’s pages to create overlapping audiences. Groups form the middle layer of Facebook’s layered hierarchy because pages can
serve as group administrators (43). Group members and page administrators can expand the audience for their content by posting it in multiple venues simultaneously.

The top two layers are network diagrams with nodes representing Facebook pages (circles) or groups (squares). Edges that were present during the prepolicy period only

are in gray; edges formed after 15 November 2020 are in fuchsia; edges that were present before and after 15 November 2020 are in black. Node locations are determined

using a force-directed layout (88). In the bottom layer, content enters individual users’ newsfeeds according to the accounts that they follow. Content spurring more
reactions is more highly ranked in these newsfeeds, and thus more likely to be seen. In this layer, “x”-shaped markers represent the proportion of angry reactions relative
to all engagements (reactions, comments, and shares). Triangular markers represent the all other reactions (like, love, haha, wow, sad, and care) relative to all engage-

ments. Projections based on ARIMA models are projected forward from the end of the prepolicy period (15 November 2020; dotted line). Analyses were conducted after

applying a logistic transform to the data; therefore, data are displayed on a logit scale. Ninety-five percent of CIs are shown. (A) Edges indicate a URL pointing from one

page to another. (B) Edges indicate that these venues routinely post the same URL near simultaneously (within 33 s). In both antivaccine pages (C) and antivaccine groups

(D), the proportion of angry reactions decreased, and the proportion of all other reactions increased relative to prepolicy trends.
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have prevented access to remaining pages for many followers. We
examined whether Facebook’s policies might have eroded the flex-
ibility of the antivaccine cluster by removing enough paths through
it to separate it into multiple components, thus making some pages
unreachable from other pages. Although the odds that a post con-
tained a link to another antivaccine page decreased to 30% (95% CI,
0.25 to 0.36; fig. S1) of prepolicy trends, this reduction was neither
significant when compared to changes within the provaccine cluster
(OR = 0.29; 95% CI, 0.03 to 3.62; Table 1) nor sufficient to separate
the cluster into multiple components (Fig. 4A and fig. S2). Thus, we
cannot conclude that Facebook’s policies meaningfully reduced the
flexibility of the antivaccine cluster.

Middle layer: New antivaccine groups coordinate with
older groups
The middle layer of Facebook’s hierarchy consists of groups and
pages that coordinate with each other. This creates a second
source of flexibility because users can reach larger audiences by
sharing the same content in multiple venues simultaneously.
Groups and pages that coordinate in this manner can circumvent
Facebook’s content removal policies by generating posts with the
same content such that, if one post is removed, copies of it will
still be present on the platform. Removal of individual groups and
pages will be less effective if users post the same content elsewhere.
Before the policy, we observed that several antivaccine pages and

groups routinely posted the same content “near simultaneously”—a
sign of potential “coordinated inauthentic behavior,” which is ex-
plicitly prohibited by Facebook (54). After the policy, several of
these pages and groups continued to do so, coordinating with
new groups (Fig. 4B). Corresponding links often promoted antivac-
cine Facebook pages, content on other social media platforms (e.g.,
YouTube), known antivaccinewebsites (e.g., ageofautism.com), and
websites promoting political calls to action, such as petitions oppos-
ing mandatory vaccines. In contrast, coordinated provaccine
content pointed to websites facilitating COVID vaccination, such
as vaccinefinder.org.
We examined whether the proportion of these “near-simultane-

ous” link pairs decreased after Facebook’s policy. Coordination in
provaccine venues was absent for several months before 16
August 2020. We therefore only fit trends to antivaccine data,
finding a significant decrease in the odds that a pair of links were
coordinated between groups and pages, to 41% of the prepolicy
trend (95% CI, 0.37 to 0.46; Table 1 and fig. S3). Facebook
reduced visible signs of coordination in the antivaccine cluster, by
breaking it into multiple, disconnected components; however, new
groups and links also appear to have formed, reconnecting these
disconnected clusters, which continued to engage in coordinated
sharing (Fig. 4B and fig. S4). Briefly, groups and pages were able
to establish new connections when old ones were disrupted, restor-
ing lost flexibility (36).

Bottom layer: Antivaccine posts are increasingly likely to be
promoted in newsfeeds
The bottom layer of Facebook’s hierarchy is made up of all users
who might see antivaccine content in their newsfeeds. Here, a
third source of flexibility makes use of Facebook’s newsfeed algo-
rithm, which is designed to promote content that has generated
“meaningful social interaction” (45, 55). Facebook reportedly uses
a weighted sum of reactions (e.g., “like,” “love,” “angry,” etc.) that

content has spurred to rank content in users’ newsfeeds (Fig. 4, C
and D) (45). Antivaccine content producers could therefore in-
crease their audience’s exposure to their content by manipulating
these reactions. For example, antivaccine advocates could
promote content that might be otherwise difficult to find by react-
ing to it, with content producers selecting posts that are more likely
to spur more influential emotional reactions, such as “sad” (45).
Starting in September 2020, Facebook reduced the weight of

angry reactions in the newsfeed ranking algorithm to zero (45). Fol-
lowing this change, we found that the odds that a post in an anti-
vaccine page elicited an angry reaction decreased to 49% (95% CI,
0.47 to 0.52) of prepolicy trends and to 10% (95%CI, 0.02 to 0.64) of
provaccine levels. The odds of an angry reaction also decreased in
antivaccine groups but increased in provaccine groups to 54% (95%
CI, 0.49 to 0.59) and 177% (95% CI, 1.49 to 2.11) of prepolicy trends
(fig. S5), respectively. This led to an overall relative decrease in anti-
vaccine groups relative to provaccine groups (OR = 0.30; 95% CI,
0.25 to 0.37).
In antivaccine groups, the odds of all other reactions increased to

130% (95% CI, 1.24 to 1.37) of prepolicy trends—1.18 (95% CI,
1.12–1.24) times more than in provaccine groups (Table 1)—
whereas, in pages, it increased to 143% (95% CI, 1.39 to 1.48) of
prepolicy trends, although this increase was not significant when
compared to provaccine pages (OR = 2.71; 95% CI, 0.20 to 36.62).
Thus, it appears that antivaccine Facebook users found ways to cir-
cumvent the intent of changes to Facebook’s algorithms, using them
to promote exposure, and obtain access to antivaccine content. To-
gether, these observations suggest that flexibility enabled by the ar-
chitecture of social media platforms is an important consideration
when attempting to mitigate harmful online behavior.

DISCUSSION

Our findings suggest that Facebook’s policies may have reduced the
number of posts in antivaccine venues but did not induce a sus-
tained reduction in engagement with antivaccine content. Misinfor-
mation proportions both on and off the platform appear to have
increased. Furthermore, it appears that antivaccine page adminis-
trators especially focused on promoting content that outpaced
updates to Facebook’s moderation policies: The largest increases
appear to have been associated with topics falsely attributing
severe vaccine adverse events and deaths to COVID-19 vaccines.
Since engagement levels with antivaccine page content did not
differ significantly from prepolicy trends, this potentially reflects
vaccine-hesitant users’ desire for more information regarding a
novel vaccine at a time when specific false claims had not yet
been explicitly debunked. This underscores a need to account for,
and address, the forces driving users’ engagement with—i.e.,
demand for—misinformative content.
Limitations to this study include that only public Facebook pages

and groups were studied.We do not make claims about behaviors in
private spaces. However, the data available through transparency
tools such as CrowdTangle constitute a critical window into the
largest, and most public, venues on the world’s largest social
media platform. Substantial prior work has shown that important
misinformation about vaccines is often found in public data (56,
57) in part because antivaccine advocates seek to recruit the
vaccine hesitant in public forums.We cannot rule out the possibility
that provaccine venues might have contained some sensationalist
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stories of vaccine harm; however, these stories do not appear to have
been sufficiently prevalent to have been detected by our topic
models. Last, our data cannot distinguish between posts or engage-
ments made by unique individuals or the same individuals repeat-
edly posting. However, this concern is mitigated by the fact that, in
pages, only administrators may post, whereas users in any venue
may only react to a given post once. Taken as a whole, our findings
emphasize the critical need for platforms to continue to provide re-
searchers with access to these public data.
Social media platforms are engineered systems (58) with explicit

design goals. In Facebook’s case, these goals include facilitating the
formation of online communities (59), which appear to use Face-
book’s architecture to expand access to antivaccine content, under-
mining attempts to curtail misinformation. The flexibility afforded
by Facebook’s system architecture, in conjunction with its position
in a broader media ecosystem, may therefore have facilitated unin-
tended consequences, including increased exposure to misinforma-
tion and political polarization, with potential implications for
offline behaviors.
Our results suggest that attempts to address misinformation

must go beyond hard and soft content remedies to account for
the flexibility afforded by system architecture. Just as the products
of building architecture must conform to building codes to protect
public health and safety, social media platform designers must con-
sider the public health consequences of their architectural choices
and perhaps even develop codes that are consistent with best scien-
tific evidence for reducing online harms.

MATERIALS AND METHODS

Throughout this study, we analyzed Facebook pages and groups
separately because they serve different functions: Pages are designed
for marketing and brand promotion, and only page administrators
may post in them. In contrast, any member may post in groups,
which serve as a forum for members to build community and
discuss shared interests. This study was deemed exempt from Insti-
tutional Review Board (IRB) review by the George Washington
University Office of Human Research (IRB #180804).

Experimental design
The objective of this study was to answer the following three re-
search questions:
1) Were Facebook’s policies associated with a substantial de-

crease in public antivaccine content and engagement with remain-
ing content?
2) Did misinformation decrease when these policies were

implemented?
3) How might Facebook’s system architecture have enabled or

undermined these policies?
To answer these questions, we used a CITS design to compare

the weekly attributes of Facebook posts in public antivaccine and
provaccine pages and groups to prepolicy trends. We also compared
antivaccine to provaccine pages and groups. Statistically significant
differences indicate that it is more likely to have been Facebook’s
policies and not some unrelated events, which caused the observed
changes.

Research question 1: Did antivaccine content and
engagement decrease?
To answer research question 1, we measured the following:
A)Weekly counts of the total number of posts in antivaccine and

provaccine pages and groups.
B) User engagement with these posts.

Calculating engagement
We calculated engagement with each post as the sum of all likes,
shares, comments, and other reactions (love, wow, haha, sad,
angry, and care) reported by CrowdTangle. Facebook’s algorithms
reportedly use a weighted sum of these engagements when priori-
tizing content within users’ newsfeeds (44).
Research question 2: Did misinformation decrease?
To answer research question 2, we examined outcome variables re-
flecting potential adverse consequences of Facebook’s policies.
A) On the basis of the hypothesis that policies may have targeted

known false claims without adapting to novel misinformation spe-
cific to COVID-19 vaccines (22), we examined theweekly fraction of
posts discussing topics that were potentially prohibited under Face-
book’s policies.
B) On the basis of the hypothesis that posts on Facebook may

have increasingly included links to misinformation on other plat-
forms (23, 49), we examined the daily fraction of web links pointing
to known misinformative, but also politically polarized, websites.

Research question 3: Did Facebook’s architecture help or
hinder removal eAorts?
Flexible systems enable users to access interdicted content via alter-
nate pathways, even if some paths were removed (34–36). We
observe that Facebook’s architecture is a layered hierarchy made
up of pages, groups, and users (Fig. 4) (34, 36). This architecture
may afford flexibility by providing several types of alternate paths.
To answer research question 3, we examined outcome variables re-
flecting each layer in this hierarchy.
A) In the top layer, page administrators can collaborate to share

followers and content by linking to one another’s pages, enabling
users to discover aligned pages and content. On the basis of the hy-
pothesis that Facebook’s policies might have eroded this capacity,
we examined the weekly fraction of links pointing between pages
in our dataset with the same stance (e.g., between antivac-
cine pages).
B) In the middle layer, groups and pages can engage in prohib-

ited coordinated inauthentic behavior (54) by sharing the same
content simultaneously. Thus, if one post is removed, then copies
of it will still be present on the platform. We therefore examined
whether antivaccine pages and groups routinely posted the same
content near simultaneously—i.e., within 33 s of each other (see
the “Middle layer: Coordinated link-sharing” section)—and
whether the proportion of these near-simultaneous link pairs de-
creased after Facebook’s policy.
C) In the bottom layer, Facebook’s algorithms promote content

in users’ newsfeeds that has generated meaningful social interaction
(45) as measured, in part, by a weighted sum of reactions (e.g., like,
love, angry, etc.) that this content has spurred (Fig. 4, C and D) (45).
Starting in September 2020, Facebook reduced the weight of angry
reactions in the newsfeed ranking algorithm to zero because they
were associated with toxic content and misinformation (45). We
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therefore examined weekly proportions of angry and other reactions
in provaccine and antivaccine pages and groups, based on the hy-
pothesis that antivaccine content producers might have increased
their audience’s exposure to corresponding content by substituting
the angry reaction for others.

Data
We downloaded data from CrowdTangle, a public insights tool
owned and operated by Facebook. All application programming in-
terfaces (APIs) that return data to researchers—including those that
generate data from social media platforms such as Facebook,
Twitter, and Reddit—are, to some extent, “black boxes” because
they use proprietary algorithms when returning data (60). We
opted to use CrowdTangle data because CrowdTangle was explicitly
designed to mitigate this concern: It has been called the most effec-
tive transparency tool in the history of social media (38, 39, 61). In
addition, we conducted several robustness checks to further miti-
gate the influence that any potential changes to Facebook or Crowd-
Tangle’s APIs might have had on our conclusions. Last, we note that
CrowdTangle tracks interactions with public content from Face-
book pages and groups. Similar to all social media platform APIs,
CrowdTangle does not include activity on private accounts or posts
made visible only to specific groups of followers; therefore, we do
not make claims about activity within these private spaces.

Procedure for identifying vaccine-related pages and groups
Similar to prior work (62, 63) that relies upon iterative procedures to
reduce biases associated with keyword selection:
1) We first identified a large set of pages and groups that men-

tioned vaccines at least once within the most recent ~300,000 posts.
We did not include venues with earlier timestamps since our aim
was to capture activity in the most prolific Facebook groups in the
lead-up to Facebook’s policy implementation. To do so, we searched
CrowdTangle on 15 November 2020, identifying and downloading
all posts containing at least one keyword from the following list:
vaccine, vaxx, vaccines, vaccination, vaccinated, vax, vaxxed, vacci-
nations, and jab. Several of these posts contained content pertaining
to guns and to pet and other animal vaccines. Thus, we ran a second
search excluding posts containing the following keywords: gun, dog,
cat, foster, adopt, shelter, vet, kennel, pet, chicken, livestock, kitten,
puppy, paw, and cow. We conducted this search on 15 November
2020 and retrieved the 299,981 most recent page posts and 299,904
group posts meeting search criteria before hitting CrowdTangle’s
download limit, with the earliest posts timestamped 7 September
2020 for pages and 1 July 2020 for groups. This procedure yielded
73,438 pages and 57,485 groups. To ensure that we only retained
venues that routinely discussed vaccines, we retained all pages
and groups whose name contained at least one of the strings
“vacc,” “vax,” or “jab,” or which posted very frequently about vac-
cines: i.e., in the top percentile—at least 44 times for pages and
58 times for groups. This procedure yielded 1231 pages and
773 groups.
2) Several of the venues generated in step 1 were news organiza-

tions that did not primarily focus on vaccination. We therefore
further narrowed down our initial list as follows: We retrieved as
many posts as possible from these venues yielding the 299,994
most recent page posts and 299,969 group posts before hitting
CrowdTangle’s download limit. As above, we did not collect
earlier posts since our aim was to identify venues that actively

posted about vaccination in the lead-up to the policy’s implemen-
tation. The earliest post from these venues was timestamped 8 No-
vember 2020 for pages and 13 November 2020 for groups. We
retained all venues for which at least 20% of posts retrieved con-
tained at least one word containing vacc or vax. We selected this
20% threshold by inspection, and our results were insensitive to
changing it (relaxing the threshold yielded more groups and
pages that were characterized as “other” in step 3, which were not
included in our analysis. All groups and pages were checked for rel-
evance by two authors—A.M.J. and J.G.).
3) On 15 November 2020, we retrieved all posts from the venues

identified in step 2 for a 12-month period starting on 15 November
2019, forward. We did not exceed the download limit for these
venues. We repeatedly collected content from these venues from
30 November 2020 to 28 February 2022 (see table S4). Qualitatively,
we found that these posts focused on general vaccine content, ad-
hering closely to existing typologies of provaccine and antivaccine
topics (64, 65). We therefore manually annotated these venues as
provaccine, antivaccine, or other. Two independent annotators
(J.G. and A.M.J.) manually assessed each group and page following
a two-tiered coding scheme (65), achieving high reliability (Cohen’s
κ = 0.88; 95% CI, 0.85 to 0.92). Categorization was based on content
shared in the “about” section of each venue. When this section was
left blank, annotators considered the venue’s title, any imagery used,
and recent posts to decide. All venues were double-coded, with dis-
agreements discursively reconciled.We retained all venues that were
labeled as provaccine or antivaccine.
This procedure is summarized in fig. S6.

Statistical analysis
To answer question 1 (A), we extracted a total of eight weekly time
series. The first four of these time series reflect the total number of
vaccine-related posts in (i) antivaccine pages, (ii) antivaccine
groups, (iii) provaccine pages, and (iv) provaccine groups. To
answer question 1 (B), the next four time series examined engage-
ments with these posts, since Facebook’s algorithms uses a sum of
different engagement types (likes, shares, etc.) when prioritizing
content within users’ newsfeeds, meaning that posts receiving
many engagements are more likely to be seen (44). We applied a
logarithm transform to all counts to correct for data skew.
The prepolicy period was defined as 15 November 2019 to 15

November 2020—the sameweek that Facebook removed StopMan-
datory Vaccination—a large page with over 360,000 members (40)
and 2 weeks before Facebook publicly committed to removing mis-
information about COVID-19 vaccines (41). The postpolicy period
was defined as the following week to 28 February 2022.We conduct-
ed robustness checks to examine the effects of shifting the policy
date as early as 19 August 2020 (when Facebook committed to re-
moving calls to violence related to the QAnon conspiracy theory)
and as late as 8 February 2021 (when Facebook stated that they
would remove all vaccine-related misinformation).

CITS analysis
We examined changes to the weekly number of posts, as well as en-
gagements with those posts, using a CITS design with a nonequiv-
alent control group—one of the strongest quasi-experimental
designs available (66). This design enabled us to estimate the
effects of changes to Facebook’s policies. Specifically, any changes
to observed data affecting antivaccine content that are not due to
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Facebook’s policies—e.g., external news about vaccine trials—are
expected to affect both provaccine and antivaccine groups and
pages since they are both focused on vaccination. We compared
the year before 15 November 2020 to the remainder of the
dataset, enabling us to estimate the effects of Facebook’s hard
content remedies on antivaccine content.
We conducted interrupted time-series analyses using autore-

gressive integrated moving average (ARIMA) models fit to weekly
sums of posts and engagements from 17 November 2019 to 15 No-
vember 2020. To control for the formation of new pages and groups
between 15 November 2019 and 15 November 2020, we divided
weekly post and engagement counts by the total number of
weekly venues in each dataset before fitting ARIMA models. We
fit all ARIMA models to prepolicy data using the auto_arima func-
tion in the pmdarima Python package (67). When time series were
not stationary, as determined by an augmented Dickey-Fuller test,
data were detrended using differencing. We selected the number of
autoregressive and moving average terms employing a parallel grid
search and otherwise using pmdarima’s default settings.
We used these models to generate counterfactual projections for

weekly posts or engagements that would have been present assum-
ing no hard remedies. We calculated the percent difference between
these counterfactual projections and observed post and engagement
counts. We consider a policy to have been effective if it consistently
reduced content beyond the 95% confidence bounds of these
projections.
Provaccine venues make an ideal nonequivalent control group

because, similar to antivaccine venues, they contain users who are
motivated to post about vaccines and would therefore respond to
exogenous factors, such as the news cycle, in the same way;
however, platforms’ policies were not designed to target provaccine
content. A statistically significant difference in antivaccine, but not
provaccine, venues, or between antivaccine and provaccine venue
effect sizes, indicates that it is more likely to have been Facebook’s
policies, and not some contemporaneous event, which caused the
observed change.
According to the CITS approach, Facebook’s content and

account removal policies in antivaccine pages and groups were ef-
fective if they caused proportionally greater deviations from prepo-
licy trends than in provaccine pages and groups. We calculated
prepolicy trends by fitting ARIMA (68) models to weekly retrospec-
tive data covering the prepolicy period, and collected on 15 Novem-
ber 2020. This model is specified as

ΘðLÞpΔdΔD
S yt ¼ ΦðLÞqΔdΔD

S εt ð1Þ

where yt is the quantity being predicted (e.g., the daily number
of posts), εt is the error at time t, Θ(L)p is a p-order
polynomial function of L capturing autoregressive terms (i.e., Lnyt =
yt−n), and Φ(L)q is a q-order polynomial function of L
capturing moving average terms (i.e., Lnεt = εt−n). In addition,

y
½d�
t ¼ Δdyt ¼ y

½d�1�
t � y

½d�1�
t�1 , where y

½0�
t ¼ yt is the order of

differencing.
To ensure stationarity and trend stationarity of our input data,

we applied augmented Dickey-Fuller tests to each input dataset
and applied differencing if these tests indicated that it was necessary.
We next determined the order of autoregressive (AR) and moving
average (MA) terms using the auto_arima function as implemented
in the pmdarima Python package, selecting the model that

minimized the Akaike information criterion after performing an ex-
haustive grid search using default settings.
Having fit ARIMA models, we used the procedure recommend-

ed by Fanshawe et al. (69) to compare postpolicy data to prepolicy
trends by calculating 1000 forecasted time series using the “simu-
late” function in the statsmodels Python package. For each forecast-
ed time series, we calculated Mk ¼

X

nþk

t¼nþ1

ŷt=k, where n is the total

number of prepolicy days and k is the total number of postpolicy
days. Thus, Mk represents the average of the forecasted values
over the postpolicy period. Given 1000 such forecasts, we were
able to calculate the mean, m̂k, and SD, ŝk, of Mk. Given a vector
of postpolicy data, yt, we calculated a Z statistic for each postpolicy

time series as Z¼

X

nþk

t¼nþ1

yt=k�m̂k

ŝk
, where the numerator of this quantity

reflects the average difference between actual and simulated postpo-
licy means and the denominator reflects the SD of this difference.
Consequently, the 95% CIs for this quantity can be estimated as

CI¼
X

nþk

t¼nþ1

yt=k� m̂k +N 1þ
α

2

� �

� ŝk ð2Þ

whereN 1� α
2

� �

is the inverse cumulative distribution function for

a type I error rate of α. For this study, α = 0.05, andN 1� α
2

� �

¼ 1:96
unless otherwise specified (e.g., when correcting for multiple
comparisons).
We calculated the effect of Facebook’s policies on antivaccine

pages and groups relative to provaccine pages and groups as

Z ¼

X

nþk

t¼nþ1

yt;anti=k � m̂k;anti

 !

�
X

nþk

t¼nþ1

yt;pro=k � m̂k;pro

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð̂sk;antiÞ
2 þ ð̂sk;proÞ

2
q ð3Þ

with the numerator of this quantity reflecting the average relative
difference and the denominator reflecting the SD of this difference.
We conducted analyses on post and engagement count data using
log transformations; thus, exponentiating these average differences
yields a risk ratio. Similarly, analyses of proportions were conducted
using logit transformations to account for multinomial variance-co-
variance structures for which exponentiating average daily differ-
ences yields ORs. Last, analyses conducted on Likert-scale data
were not transformed.
A statistically significant difference between antivaccine and pro-

vaccine effect sizes indicates that it is more likely to have been Face-
book’s policies, and not some contemporaneous event, which
caused the observed change. In contrast, statistically significant dif-
ferences in both antivaccine and provaccine posts may indicate
either the effects of some exogenous event or, alternatively, that
Facebook’s policies affected both types of content. By using this ap-
proach, we were able to make inferences about the effects of Face-
book’s policies that would not be possible using antivaccine
data alone.
Unlike approaches such as the difference-in-differences design

(70), this approach does not require us to assume that the relation-
ship between Facebook’s policies and activity in provaccine and
antivaccine pages and groups is constant over time or to assume a
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“burn-in” period of arbitrary length during which Facebook’s pol-
icies were being rolled out. Rather, this approach allows us to assess
the net effect of Facebook’s policies throughout the postpolicy
period. This is especially important because Facebook’s own press
releases indicated that users should expect a delay between Face-
book’s policy announcements and a fully realized content removal
policy. Furthermore, this model does not require us to assume that
Facebook implemented their policies consistently throughout the
postpolicy period but may have instead engaged in multiple waves
of content and account removal in responses to external events (e.g.,
media attention).
Statistical analyses were performed using Python’s pmdarima

(71) and statsmodels (72) packages. All tests were two-sided and a
P value of 0.05 or less was considered statistically significant.

Structural topic model analysis
To answer question 2 (A), we extracted the text from each Facebook
post by combining the “Message,” “Image Text,” “Link Text,” and
“Description” fields returned by CrowdTangle. We first identified
unique English posts using the langdetect Python package (73),
yielding 268,875 antivaccine posts and 76,954 provaccine posts col-
lected in the pages and groups identified 15 November 2020. We
next removed non-English posts and converted all English text to
lowercase. Next, we removed all numerals, punctuation, symbols,
and web links.
Structural topic models (STMs) were fit using the R Project for

Statistical Computing’s stm (74) software package. Data were used
as input to the STM algorithm (74), using the Mimno and Lee al-
gorithm (75) to automatically select the number of topics. STMs
enable a comparison between antivaccine and provaccine aspects
of the same topic, allowing us to use provaccine topics as a non-
equivalent control group. We used the resulting model to extract
several indicators of topic interpretation, including word clouds de-
picting the most frequent words for each topic and example posts
with the highest fraction of each topic (see tables S1 and S2). We
assigned descriptive labels to each topic based on these indicators.
Next, we used these labels to assign each topic to descriptive cate-
gories following a widely used and validated typology of vaccine-
related online content (56, 64, 65). In addition, we determined
whether these descriptive labels matched content that Facebook’s
COVID-19 and Vaccine Policy listed as misinformative or other-
wise prohibited (76). Specifically, three coders (A.M.J., J.G., and
D.A.B.) independently assigned thematic labels to the 61 topics
based off of the word clouds generated by the model (table S1).
We next assessed similarity between labels, indicating matches
that were very close, similar, and not at all close. For example,
J.G.’s “Alternative Medicine,” A.M.J.’s “Natural Remedies,” and
D.A.B.’s “Homeopathy” were considered very close labels because
they captured the same underlying theme. Meanwhile, while J.G.
and D.A.B. agreed on “Vaccine Mandates,” A.M.J.’s label of “Gov’t
Overreach” was only considered similar because, while they cap-
tured similar underlying themes, they focused on different dimen-
sions. Of the 61 topics, coders’ labels were considered very close, or
similar matches for 53 (87%) topics. Overall, there was very high
agreement among all three raters, Fleiss’ κ = 0.895, P < 0.001.
Among the topics where raters did not agree, there were five
topics where two of three coders agreed, but the third coder did
not align. There were three topics where there was no clear agree-
ment between any of the coders. For these eight topics, we engaged

in a second round of coding, based on the full text of the top 10
provaccine posts and top 10 antivaccine posts for each topic.
With this additional data, we revisited our codes and discursively
reached agreement. After reaching consensus, the final labels were
applied to each topic.
Next, the same three coders each independently assessed

whether content from each of the 61 topics were prohibited under
Facebook’s content policies. Options included yes for potentially
prohibited and no for likely not prohibited. For topics labeled as
prohibited, we also included justifications for which policies were
likely to be violated. Of the 61 topics, coders agreed on 52 topics.
Overall, there was substantial agreement among all three raters,
Fleiss’ κ = 0.735, P < 0.001. For the nine topics on which raters
did not agree, the team discussed responses, discursively reached
agreement, and applied a final decision.
After labeling each topic, we calculated proportions of each topic

in each English post, applying a logistic transform to control for
floor and ceiling effects. We extracted time series by averaging
weekly proportions of each topic in antivaccine and provaccine
pages and groups, respectively. Next, we fit ARIMA models to pre-
policy trends.We corrected for potential type I error due tomultiple
comparisons using the Benjamini-Hochberg procedure (table
S3) (77).

Misinformative and polarized URL analysis
Facebook posts frequently contain links to external websites. To
answer question 2 (B), we extracted these links and determined
whether they pointed to misinformative and polarized sources by
comparing them to validated, publicly available lists of these
sources (78). Specifically, for each dataset, we extracted all URLs
in the “Link” field returned by CrowdTangle or the “Final Link”
field if it was nonempty (meaning that the “Link” field used a
URL shortener). Next, using the TLDExtract Python module (79),
we extracted the top-level domain (TLD) and suffix for each URL
(for example, the TLD of www.example.com/this-is-an-example.
html is example.com).
A large body of prior work (78, 80–83) shows that posts with

links to noncredible sources may serve as a proxy for misinforma-
tion (46, 84, 85). We next calculated the weekly proportion in pro-
vaccine and antivaccine venues of all posts with a TLD listed on
iffy.news (86)—a list of publishers identified by MediaBiasFactCh-
eck.com as having “low” or “very low” factual reporting scores—on
30 April 2022. MediaBiasFactCheck ratings are known to be
strongly correlated with several other URL credibility ratings (78,
81). We also calculated the weekly proportion of engagements
with low-credibility URLs by weighting each post containing an
“Iffy” off-platform URL by the total number of engagements with
it. We conducted interrupted time-series ARIMA analyses on
these weekly averages after applying logit transforms to correct for
floor and ceiling effects. We did not analyze provaccine content
because Iffy URLs were largely absent from provaccine venues.
MediaBiasFactCheck.com also scores websites by their partisan

bias ranging from far right (−4) to far left (4). We collated a list of
1314 publishers that had been scored by MediaBiasFactCheck.com
as of 3 February 2022. We next calculated the weekly proportion in
provaccine and antivaccine venues of all posts with a TLD identified
by MediaBiasFactCheck.com as having “right,” “far right,” “extreme
right,” “left,” “far left,” or “extreme left” bias scores. We also calcu-
lated the weekly proportion of engagements with polarized URLs by
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weighting each post containing a polarized off-platformURL by the
total number of engagements with it. We conducted interrupted
time-series ARIMA analyses on these weekly averages after applying
logit transforms to correct for floor and ceiling effects. We did not
analyze provaccine content because polarized URLs were absent
from provaccine venues during several weeks.
Last, we calculated the weekly average “Bias Rating” for all rated

links and examined how this average changed over time in both pro-
vaccine and antivaccine venues. Links to these publishers made up
34 and 17% of off-platforms links to pages and groups, among
venues identified 15 November 2020, garnering 41 and 19% of en-
gagements, respectively. Similarly, links to these publishers made up
34 and 15% of off-platforms links to pages and groups, among
venues identified 21 July 2021, garnering 55 and 14% of
engagements.

Top layer: Building Facebook page networks
To answer research question 3 (A), we examined whether Face-
book’s new policies reduced links between the antivaccine and pro-
vaccine pages in our sample. (The number of links to, and between,
groups was zero in most weeks.) We identified all posts containing a
link starting with www.facebook.com. We then calculated the pro-
portion of all posts containing a link that pointed to antivaccine and
provaccine pages in each of our samples. Specifically, we identified
and extracted the unique numerical Facebook ID and username for
each provaccine and antivaccine page in each dataset. We consid-
ered a source page to be linked to a target page if a URL posted
on the source page began with www.facebook.com/<Facebook
ID>/ or www.facebook.com/<account name>/. We next calculated
the weekly proportion of all posts that pointed from antivaccine
pages to other antivaccine pages (excluding self-links) and from
provaccine pages to other provaccine pages. We next conducted
CITS analyses on these weekly proportions. After applying a logit
transform to our data to control for floor and ceiling effects, we
fit ARIMA models to prepolicy data, comparing postpolicy data
to model projections using the same techniques and transforms
applied to answer research question 2 (B). Since pages largely over-
lapped between samples identified 15 November 2020 and 21 July
2021, we combined these data since doing so allowed us to also
examine links between pages that were in separate datasets (separate
analyses of these datasets may be found in fig. S1). We also used the
links that we extracted to construct unweighted networks. In prac-
tice, these networks qualitatively resemble prior work based on
mutual “likes” between pages but which currently require access
to Facebook’s commercial APIs to replicate at scale (53, 87).
Similar to this prior work, our networks were displayed using a
force-directed layout algorithm (88).

Middle layer: Coordinated link-sharing
To answer research question 3 (B), we observe that Facebook’s com-
munity standards disallow “us[ing] fake accounts, artificially
boost[ing] the popularity of content, or engag[ing] in behaviors de-
signed to enable other violations under our Community Standards”
(54). Prior works (89, 90) suggest that this type of coordinated in-
authentic behavior may be detected under the assumption that
“near-simultaneous link sharing” is a signal of coordination (90–
93). Building upon prior work (90), we operationalized near-simul-
taneous link sharing in a manner that was intended to be robust to
the specific query being used. We conducted three “blank search”

queries between 30 March and 31 March 2020 on CrowdTangle
to identify the ~300,000 most recent posts each for pages and
groups available on the platform, combining across pages and
groups. We calculated the time difference in seconds between
each successive share of the same URLs. To distinguish between co-
ordinated and uncoordinated behaviors, we modeled the distribu-
tion of these interarrival times as a mixture of exponential
distributions with components corresponding to “near simultane-
ous” sharing and “nonsimultaneous” sharing. We used the exp-
mixture-model package (94) in Python to fit these exponential
mixture models to interarrival time data derived from three blank
searches conducted on CrowdTangle between 30 March and 31
March 2021. We found that several model goodness-of-fit measures
converged on a two-component distribution for each dataset (see
table S5).
We next examined the goodness of fit of these estimated distri-

butions by comparing them each one to its respective dataset (see
the Supplementary Materials) and using Kolmogorov-Smirnov
tests. Although each test detected a significant difference (d1 =
0.12, d2 = 0.13, and d3 = 0.13, P < 0.001 in all cases), our large
dataset sizes (n1 = 87,000, n2 = 85,346, and n3 = 93,075) mean
that we are powered to detect very small differences. Furthermore,
our model underestimates the likelihood of near-simultaneous
sharing for very small time differences (between 0 and 15 s),
meaning that our estimated threshold is conservative (see fig. S7).
The best fitting model was made up of two components, with

mean interarrival times of μnear-simultaneous = 9.95 s and
μnonsimultaneous = 227.45 s, meaning that a URL shared by two
venues in under 33 s is more likely to have originated from the
near-simultaneous component than the nonsimultaneous compo-
nent. This number is comparable to thresholds defined heuristically
in prior work (90–93). We considered venues to be routinely coor-
dinated if their empirical frequency of near simultaneous links sig-
nificantly exceeded 13.34%—the expected likelihood that links were
drawn from the nonsimultaneous distribution—using binomial
tests. Venues were linked if they were significantly coordinated at
the P < 0.05 level after controlling for multiple comparisons using
the Holm-Bonferroni procedure. We also tested several threshold
values ranging from 25 to 41 s and found that results qualitatively
replicated. We also calculated the proportion of all link pairs that
were classified as near-simultaneous and, after applying a logit
transform, fit ARIMAmodels to prepolicy data, comparing postpo-
licy data to prepolicy projections (see fig. S3) using the same tech-
niques and transforms applied to answer research question 2 (B).
We were unable to calculate ARIMA models for provaccine data
since coordinated links were absent for several months during the
spring and summer of 2020. However, starting in Fall 2020, we ob-
served an increase in provaccine coordinated behavior.

Bottom layer: Angry and other reactions
To answer research question 3 (C), for each dataset, we calculated
the weekly proportion of engagements that were reportedly (45)
given zero weight (angry) and those that were positively weighted
by Facebook’s newsfeed algorithm (likes, love, sad, haha, wow,
and care) and conducted interrupted time-series analyses on
these proportions. We fit ARIMA models to logit-transformed pre-
policy data, comparing postpolicy data to prepolicy projections (see
fig. S5) using the same techniques and transforms applied to answer
research question 2 (B).
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Robustness checks
We conducted several robustness checks to evaluate whether our
results were sensitive to modeling assumptions. Specifically, we ex-
amined the sensitivity of our results to the following:
1) Selection of policy date: We replicated results of our CITS

analysis using a range of policy dates extending from 17 August
2020 to 8 February 2021. Results of this analysis suggest that these
alternative dates do not provide better explanations of the data than
our reference date of 18 November 2020.
2) Engagement aggregation method: We replicated results of our

engagement count analysis, examining types of engagements (com-
ments, shares, and reactions) separately. Results of this analysis
suggest that our primary results largely replicated across engage-
ment types and especially for reactions.
3) Topic modeling technique: We replicated results of our STM

analysis using other topic modeling techniques. Results of this anal-
ysis suggest that our findings are not sensitive to the specific topic
model used.
4) Data collection date: We identified a second set of anti- and

provaccine pages and groups on 28 July 2021. We found that our
results largely replicated the findings of the first set of pages
and groups.
5) Data aggregation window: We examined whether our results

changed when aggregating data by day rather than by week. We
found that our results largely replicated across data aggrega-
tion windows.
Detailed results for all of these robustness checks are found in the

Supplementary Materials.
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